Learning Task Grouping and Overlap in Multi-Task Learning

Learning Task Grouping and Overlap in Multi-Task Learning

Abhishek Kumar, Hal Daume

Intro

multi-task learning作为一种transfer learning方法,经常会观测到negative transfer。这篇paper就提供了一个结构化的prior,能将关联的task形成group,并且不同的group直接会有一定的overlap。

已经有人做了类似的工作,Learning with Whom to Share in Multi-task Feature Learning, Kang ICML 2011,只不过他们用的是hard clustering,这篇论文用soft clustering。

Learning Task Grouping and Overlap

假设是linear classifier,$$\hat y=W^T X$$,然后使用implicit factorization,假设$$W = L S$$。其中$$L \in \mathbb{R}^{d \times k}$$,表示有k个latent task,d是每一个task的feature dimension(也是data point的个数);$$S \in \mathbb{R}^{k \times T}$$,是对应T个task,每一个latent task都能通过$$k \times 1$$的向量,linear组合成task representation。

results matching ""

    No results matching ""